HERMITE INTERPOLATION ALGORITHM;
|
|
||||||||||||||||
DescriptionNumerical calculations Algorithms: HERMITE INTERPOLATION ALGORITHM TO OBTAIN THE COEFFICIENTS OF THE HERMITE INTERPOLATING POLYNOMIAL H ON THE (N+1) DISTINCT NUMBERS X(0), ..., X(N)FOR THE FUNCTION F: INPUT: NUMBERS X(0), X(1), ..., X(N); VALUES F(X(0)), F(X(1)), ..., F(X(N)) AND F'(X(0)), F'(X(1)), ..., F'(X(N)). OUTPUT: NUMBERS Q(0,0), Q(1,1), ..., Q(2N + 1,2N + 1) WHERE H(X) = Q(0,0) + Q(1,1) * ( X - X(0) ) + Q(2,2) * ( X - X(0) )**2 + Q(3,3) * ( X - X(0) )**2 * ( X - X(1) ) + Q(4,4) * ( X - X(0) )**2 * ( X - X(1) )**2 + ... + Q(2N + 1,2N + 1) * ( X - X(0) )**2 * ( X - X(1) )**2 * ... * ( X - X(N - 1) )**2 * (X - X(N) ). |
Sponsored links
File list
Tips: You can preview the content of files by clicking file names^_^Name | Size | Date |
---|---|---|
alg033.exe | 17.75 kB | 16-11-14 08:09 |
alg033.pas | 9.04 kB | 16-11-14 08:09 |
<10> | 0.00 B | 16-11-14 08:09 |
Sponsored links
Comments
(Add your comment, get 0.1 Point)
Minimum:15 words, Maximum:160 words
- 1
- Page 1
- Total 1