Home » Source Code » HERMITE INTERPOLATION ALGORITHM;

## Description

Numerical calculations Algorithms:  HERMITE INTERPOLATION ALGORITHM

TO OBTAIN THE COEFFICIENTS OF THE HERMITE INTERPOLATING

POLYNOMIAL H ON THE (N+1) DISTINCT NUMBERS X(0), ..., X(N)
FOR THE FUNCTION F:

INPUT:   NUMBERS X(0), X(1), ..., X(N); VALUES F(X(0)), F(X(1)),
..., F(X(N)) AND F'(X(0)), F'(X(1)), ..., F'(X(N)).

OUTPUT:  NUMBERS Q(0,0), Q(1,1), ..., Q(2N + 1,2N + 1) WHERE

H(X) = Q(0,0) + Q(1,1) * ( X - X(0) ) + Q(2,2) *
( X - X(0) )**2 + Q(3,3) * ( X - X(0) )**2 *
( X - X(1) ) + Q(4,4) * ( X - X(0) )**2 *
( X - X(1) )**2 + ... + Q(2N + 1,2N + 1) *
( X - X(0) )**2 * ( X - X(1) )**2 * ... *
( X - X(N - 1) )**2 * (X - X(N) ).

## File list

Tips: You can preview the content of files by clicking file names^_^
Name Size Date
alg033.exe17.75 kB16-11-14 08:09
alg033.pas9.04 kB16-11-14 08:09
<10>0.00 B16-11-14 08:09
...

Minimum:15 words, Maximum:160 words
• 1
• Sent successfully!
• 10.rar
• 1 Point(s)

### HERMITE INTERPOLATION ALGORITHM;(10.66 kB)

Need 1 Point(s)

Get 22 Point immediately by PayPal

More(Debit card / Credit card / PayPal Credit / Online Banking)

Submit your source codes. Get more Points

Don't have an account？ Register now
Need any help?
Mail to: support@codeforge.com

### 切换到中文版？

CodeForge Chinese Version
CodeForge English Version

### ^_^"Oops ...

Sorry!This guy is mysterious, its blog hasn't been opened, try another, please!

### Warm tip!

Favorite by Ctrl+D