Home » Source Code » Eye tracking using opencv » lbpcascade_frontalface.xml

lbpcascade_frontalface.xml ( File view )

  • By marque 2014-03-29
  • View(s):51
  • Download(s):6
  • Point(s): 2
			<?xml version="1.0"?>
<!--
number of positive samples 3000
number of negative samples 1500
-->
<opencv_storage>
<cascade type_id="opencv-cascade-classifier">
  <stageType>BOOST</stageType>
  <featureType>LBP</featureType>
  <height>24</height>
  <width>24</width>
  <stageParams>
    <boostType>GAB</boostType>
    <minHitRate>0.9950000047683716</minHitRate>
    <maxFalseAlarm>0.5000000000000000</maxFalseAlarm>
    <weightTrimRate>0.9500000000000000</weightTrimRate>
    <maxDepth>1</maxDepth>
    <maxWeakCount>100</maxWeakCount></stageParams>
  <featureParams>
    <maxCatCount>256</maxCatCount></featureParams>
  <stageNum>20</stageNum>
  <stages>
    <!-- stage 0 -->
    <_>
      <maxWeakCount>3</maxWeakCount>
      <stageThreshold>-0.7520892024040222</stageThreshold>
      <weakClassifiers>
        <!-- tree 0 -->
        <_>
          <internalNodes>
            0 -1 46 -67130709 -21569 -1426120013 -1275125205 -21585
            -16385 587145899 -24005</internalNodes>
          <leafValues>
            -0.6543210148811340 0.8888888955116272</leafValues></_>
        <!-- tree 1 -->
        <_>
          <internalNodes>
            0 -1 13 -163512766 -769593758 -10027009 -262145 -514457854
            -193593353 -524289 -1</internalNodes>
          <leafValues>
            -0.7739216089248657 0.7278633713722229</leafValues></_>
        <!-- tree 2 -->
        <_>
          <internalNodes>
            0 -1 2 -363936790 -893203669 -1337948010 -136907894
            1088782736 -134217726 -741544961 -1590337</internalNodes>
          <leafValues>
            -0.7068563103675842 0.6761534214019775</leafValues></_></weakClassifiers></_>
    <!-- stage 1 -->
    <_>
      <maxWeakCount>4</maxWeakCount>
      <stageThreshold>-0.4872078299522400</stageThreshold>
      <weakClassifiers>
        <!-- tree 0 -->
        <_>
          <internalNodes>
            0 -1 84 2147483647 1946124287 -536870913 2147450879
            738132490 1061101567 243204619 2147446655</internalNodes>
          <leafValues>
            -0.8083735704421997 0.7685696482658386</leafValues></_>
        <!-- tree 1 -->
        <_>
          <internalNodes>
            0 -1 21 2147483647 263176079 1879048191 254749487 1879048191
            -134252545 -268435457 801111999</internalNodes>
          <leafValues>
            -0.7698410153388977 0.6592915654182434</leafValues></_>
        <!-- tree 2 -->
        <_>
          <internalNodes>
            0 -1 106 -98110272 1610939566 -285484400 -850010381
            -189334372 -1671954433 -571026695 -262145</internalNodes>
          <leafValues>
            -0.7506558895111084 0.5444605946540833</leafValues></_>
        <!-- tree 3 -->
        <_>
          <internalNodes>
            0 -1 48 -798690576 -131075 1095771153 -237144073 -65569 -1
            -216727745 -69206049</internalNodes>
          <leafValues>
            -0.7775990366935730 0.5465461611747742</leafValues></_></weakClassifiers></_>
    <!-- stage 2 -->
    <_>
      <maxWeakCount>4</maxWeakCount>
      <stageThreshold>-1.1592328548431396</stageThreshold>
      <weakClassifiers>
        <!-- tree 0 -->
        <_>
          <internalNodes>
            0 -1 47 -21585 -20549 -100818262 -738254174 -20561 -36865
            -151016790 -134238549</internalNodes>
          <leafValues>
            -0.5601882934570313 0.7743113040924072</leafValues></_>
        <!-- tree 1 -->
        <_>
          <internalNodes>
            0 -1 12 -286003217 183435247 -268994614 -421330945
            -402686081 1090387966 -286785545 -402653185</internalNodes>
          <leafValues>
            -0.6124526262283325 0.6978127956390381</leafValues></_>
        <!-- tree 2 -->
        <_>
          <internalNodes>
            0 -1 26 -50347012 970882927 -50463492 -1253377 -134218251
            -50364513 -33619992 -172490753</internalNodes>
          <leafValues>
            -0.6114496588706970 0.6537628173828125</leafValues></_>
        <!-- tree 3 -->
        <_>
          <internalNodes>
            0 -1 8 -273 -135266321 1877977738 -2088243418 -134217987
            2146926575 -18910642 1095231247</internalNodes>
          <leafValues>
            -0.6854077577590942 0.5403239130973816</leafValues></_></weakClassifiers></_>
    <!-- stage 3 -->
    <_>
      <maxWeakCount>5</maxWeakCount>
      <stageThreshold>-0.7562355995178223</stageThreshold>
      <weakClassifiers>
        <!-- tree 0 -->
        <_>
          <internalNodes>
            0 -1 96 -1273 1870659519 -20971602 -67633153 -134250731
            2004875127 -250 -150995969</internalNodes>
          <leafValues>
            -0.4051094949245453 0.7584033608436585</leafValues></_>
        <!-- tree 1 -->
        <_>
          <internalNodes>
            0 -1 33 -868162224 -76810262 -4262145 -257 1465211989
            -268959873 -2656269 -524289</internalNodes>
          <leafValues>
            -0.7388162612915039 0.5340843200683594</leafValues></_>
        <!-- tree 2 -->
        <_>
          <internalNodes>
            0 -1 57 -12817 -49 -541103378 -152950 -38993 -20481 -1153876
            -72478976</internalNodes>
          <leafValues>
            -0.6582943797111511 0.5339496731758118</leafValues></_>
        <!-- tree 3 -->
        <_>
          <internalNodes>
            0 -1 125 -269484161 -452984961 -319816180 -1594032130 -2111
            -990117891 -488975296 -520947741</internalNodes>
          <leafValues>
            -0.5981323719024658 0.5323504805564880</leafValues></_>
        <!-- tree 4 -->
        <_>
          <internalNodes>
            0 -1 53 557787431 670265215 -1342193665 -1075892225
            1998528318 1056964607 -33570977 -1</internalNodes>
          <leafValues>
            -0.6498787999153137 0.4913350641727448</leafValues></_></weakClassifiers></_>
    <!-- stage 4 -->
    <_>
      <maxWeakCount>5</maxWeakCount>
      <stageThreshold>-0.8085358142852783</stageThreshold>
      <weakClassifiers>
        <!-- tree 0 -->
        <_>
          <internalNodes>
            0 -1 60 -536873708 880195381 -16842788 -20971521 -176687276
            -168427659 -16777260 -33554626</internalNodes>
          <leafValues>
            -0.5278195738792419 0.6946372389793396</leafValues></_>
        <!-- tree 1 -->
        <_>
          <internalNodes>
            0 -1 7 -1 -62981529 -1090591130 805330978 -8388827 -41945787
            -39577 -531118985</internalNodes>
          <leafValues>
            -0.5206505060195923 0.6329920291900635</leafValues></_>
        <!-- tree 2 -->
        <_>
          <internalNodes>
            0 -1 98 -725287348 1347747543 -852489 -16809993 1489881036
            -167903241 -1 -1</internalNodes>
          <leafValues>
            -0.7516061067581177 0.4232024252414703</leafValues></_>
        <!-- tree 3 -->
        <_>
          <internalNodes>
            0 -1 44 -32777 1006582562 -65 935312171 -8388609 -1078198273
            -1 733886267</internalNodes>
          <leafValues>
            -0.7639313936233521 0.4123568832874298</leafValues></_>
        <!-- tree 4 -->
        <_>
          <internalNodes>
            0 -1 24 -85474705 2138828511 -1036436754 817625855
            1123369029 -58796809 -1013468481 -194513409</internalNodes>
          <leafValues>
            -0.5123769044876099 0.5791834592819214</leafValues></_></weakClassifiers></_>
    <!-- stage 5 -->
    <_>
      <maxWeakCount>5</maxWeakCount>
      <stageThreshold>-0.5549971461296082</stageThreshold>
      <weakClassifiers>
        <!-- tree 0 -->
        <_>
          <internalNodes>
            0 -1 42 -17409 -20481 -268457797 -134239493 -17473 -1 -21829
            -21846</internalNodes>
          <leafValues>
            -0.3763174116611481 0.7298233509063721</leafValues></_>
        <!-- tree 1 -->
        <_>
          <internalNodes>
            0 -1 6 -805310737 -2098262358 -269504725 682502698
            2147483519 1740574719 -1090519233 -268472385</internalNodes>
          <leafValues>
            -0.5352765917778015 0.5659480094909668</leafValues></_>
        <!-- tree 2 -->
        <_>
          <internalNodes>
            0 -1 61 -67109678 -6145 -8 -87884584 -20481 -1073762305
            -50856216 -16849696</internalNodes>
          <leafValues>
            -0.5678374171257019 0.4961479902267456</leafValues></_>
        <!-- tree 3 -->
        <_>
          <internalNodes>
            0 -1 123 -138428633 1002418167 -1359008245 -1908670465
            -1346685918 910098423 -1359010520 -1346371657</internalNodes>
          <leafValues>
            -0.5706262588500977 0.4572288393974304</leafValues></_>
        <!-- tree 4 -->
        <_>
          <internalNodes>
            0 -1 9 -89138513 -4196353 1256531674 -1330665426 1216308261
            -36190633 33498198 -151796633</internalNodes>
          <leafValues>
            -0.5344601869583130 0.4672054052352905</leafValues></_></weakClassifiers></_>
    <!-- stage 6 -->
    <_>
      <maxWeakCount>5</maxWeakCount>
      <stageThreshold>-0.8776460289955139</stageThreshold>
      <weakClassifiers>
        <!-- tree 0 -->
        <_>
          <internalNodes>
            0 -1 105 1073769576 206601725 -34013449 -33554433 -789514004
            -101384321 -690225153 -264193</internalNodes>
          <leafValues>
            -0.7700348496437073 0.5943940877914429</leafValues></_>
        <!-- tree 1 -->
        <_>
          <internalNodes>
            0 -1 30 -1432340997 -823623681 -49153 -34291724 -269484035
            -1342767105 -1078198273 -1277955</internalNodes>
          <leafValues>
            -0.5043668746948242 0.6151274442672730</leafValues></_>
        <!-- tree 2 -->
        <_>
          <internalNodes>
            0 -1 35 -1067385040 -195758209 -436748425 -134217731
            -50855988 -129 -1 -1</internalNodes>
          <leafValues>
            -0.6808040738105774 0.4667325913906097</leafValues></_>
        <!-- tree 3 -->
        <_>
          <internalNodes>
  
...
...
(Not finished, please download and read the complete file)
			
...
Expand> <Close

Want complete source code? Download it here

Point(s): 2

Download
0 lines left, continue to read
Sponsored links

File list

Tips: You can preview the content of files by clicking file names^_^
Name Size Date
constants.h685.00 B2014-03-23 00:51
eye_track.sln879.00 B2014-01-12 12:47
eye_track.vcxproj5.52 kB2014-03-22 23:39
eye_track.vcxproj.filters1.49 kB2014-03-22 23:39
main.cpp2.52 kB2014-03-23 01:09
OPENCV_DEBUG.props883.00 B2014-01-14 18:35
OPENCV_RELEASE.props872.00 B2014-01-14 18:36
01.97 kB
haarcascade_frontalface_alt.xml923.86 kB2014-01-12 12:58
haarcascade_frontalface_alt_tree.xml3.48 MB2013-11-13 15:14
lbpcascade_frontalface.xml50.64 kB2013-11-13 15:14
track_eye.cpp6.28 kB2014-03-23 01:22
track_eye.h267.00 B2014-03-22 23:51
...
Sponsored links

lbpcascade_frontalface.xml (550.50 kB)

Need 2 point
Your Point(s)

Your Point isn't enough.

Get point immediately by PayPal

More(Debit card / Credit card / PayPal Credit / Online Banking)

Submit your source codes. Get more point

LOGIN

Don't have an account? Register now
Need any help?
Mail to: support@codeforge.com

切换到中文版?

CodeForge Chinese Version
CodeForge English Version

Where are you going?

^_^"Oops ...

Sorry!This guy is mysterious, its blog hasn't been opened, try another, please!
OK

Warm tip!

CodeForge to FavoriteFavorite by Ctrl+D